

DS8922/DS8922A/DS8923/DS8923A TRI-STATE® RS-422 Dual Differential Line Driver and Receiver Pairs

General Description

The DS8922/22A and DS8923/23A are Dual Differential Line Driver and Receiver pairs. These devices are designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, the devices meet the requirements of the EIA Standard RS-422.

These devices offer an input sensitivity of 200 mV over a ±7V common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms. An input fail-safe circuit is provided such that if the receiver inputs are open the output assumes the logical one state.

The DS8922A and DS8923A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation

Both devices feature TRI-STATE outputs. The DS8922/22A have independent control functions common to a driver and receiver pair. The DS8923/23A have separate driver and receiver control functions.

Power up/down circuitry is featured which will TRI-STATE the outputs and prevent erroneous glitches on the transmission lines during system power up or power down operation. The DS8922/22A and DS8923/23A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew—±0.5 ns typical
- Meets the requirements of EIA Standard RS-422
- Complementary Driver Outputs
- High differential or common-mode input voltage ranges of ±7V
- ±0.2V receiver sensitivity over the input voltage range
- Receiver input fail-safe circuitry
- Receiver input hysteresis-70 mV typical
- Glitch free power up/down
- TRI-STATE outputs

Connection Diagrams

DS8922A Dual-In-Line DS8923A Dual-In-Line

Order Number DS8922M, DS8922N, DS8922AM or DS8922AN See NS Package Number M16A or N16A

© 1997 National Semiconductor Corporation

Order Number DS8923M. DS8923N, DS8923AM or DS8923AN See NS Package Number M16A or N16A

Truth Tables

DS8922/22A

EN1	EN2	RO1	RO2	DO1	DO2
0	0	ACTIVE	ACTIVE	ACTIVE	ACTIVE
1	0	HI-Z	ACTIVE	HI-Z	ACTIVE
0	1	ACTIVE	HI-Z	ACTIVE	HI-Z
1	1	HI-Z	HI-Z	HI-Z	HI-Z

DS8923/23A

DEN	REN	RO1	RO2	DO1	DO2
0	0	ACTIVE	ACTIVE	ACTIVE	ACTIVE
1	0	ACTIVE	ACTIVE	HI-Z	HI-Z
0	1	HI-Z	HI-Z	ACTIVE	ACTIVE
1	1	HI-Z	HI-Z	HI-Z	HI-Z

TRI-STATE® is a registered trademark of National Semiconductor Corp

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 Supply Voltage
 7V

 Drive Input Voltage
 -0.5V to +7V

 Output Voltage
 5.5V

 Receiver Output Sink Current
 50 mA

 Receiver Input Voltage
 ±10V

 Differential Input Voltage
 ±12V

Maximum Package Power Dissipation @ +25°C

M Package 1300 mW

N Package 1450 mW

Derate M Package 10.4 mW/°C above +25°C Derate N Package 11.6 mW/°C above +25°C

Storage Temperature Range -65°C to +165°C Lead Temp. (Soldering, 4 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage	4.5	5.5	V
Temperature (T _A)	0	70	°C

DS8922/22A and DS8923/23A Electrical Characteristics (Notes 2, 3, 4)

Symbol	Conditions		Min	Тур	Max	Units
RECEIVER						
V _{TH}	-7V ≤ V _{CM} ≤ +7V		-200	±35	+200	mV
V _{HYST}	-7V ≤ V _{CM} ≤ +7V		15	70		mV
R _{IN}	$V_{IN} = -7V, +7V$ (Oth	er Input = GND)	4.0	6.0		kΩ
I _{IN}	V _{IN} = 10V				3.25	mA
	$V_{IN} = -10V$				-3.25	mA
V _{OH}	V _{CC} = MIN, I _{OH} = -	400 μΑ	2.5			V
V _{OL}	V _{CC} = MAX, I _{OL} = 8	mA			0.5	V
I _{sc}	V _{CC} = MAX, V _{OUT} =	0V	-15		-100	mA
DRIVER						
V _{OH}	$V_{CC} = MIN, I_{OH} = -2$	20 mA	2.5			V
V _{OL}	$V_{CC} = MIN, I_{OL} = +2$	20 mA			0.5	V
I _{OFF}	V _{CC} = 0V, V _{OUT} = 5	.5V			100	μΑ
VT - VT					0.4	V
VT			2.0			V
Vos-Vos					0.4	V
I _{sc}	V _{CC} = MAX, V _{OUT} = 0V		-30		-150	mA
DRIVER and R	ECEIVER		·	•		
l _{oz}		V _{OUT} = 2.5V			50	μA
TRI-STATE Leakage	V _{CC} = MAX	V _{OUT} = 0.4V			-50	μА
I _{cc}	V _{CC} = MAX	ACTIVE			76	mA
		TRI-STATE			78	mA
DRIVER and E	NABLE INPUTS	<u>'</u>	'	•		1
V _{IH}			2.0			V
V _{IL}					0.8	V
I _{IL}	$V_{CC} = MAX, V_{IN} = 0.4V$			-40	-200	μΑ
I _{IH}	V _{CC} = MAX, V _{IN} = 2	7V			20	μΑ
I _I	V _{CC} = MAX, V _{IN} = 7	7.0V			100	μΑ
V _{CL}	V _{CC} = MIN, I _{IN} = -1	8 mA			-1.5	V

Receiver Switching Characteristics

(Figures 1, 2, 3)

Parameter	Conditions	Min	Тур	Max		Units
				8922/23	8922A/23A	
T _{pLH}	CL = 30 pF		12	22.5	20	ns
T _{pHL}	CL = 30 pF		12	22.5	20	ns
T _{pLH} -T _{pHL}	CL = 30 pF		0.5	5	3.5	ns
Skew (Channel to Channel)	CL = 30 pF		0.5	3.0	2.0	ns
T_{pLZ}	CL = 15 pF S2 Open		15			ns
T _{pHZ}	CL = 15 pF S1 Open		15			ns
T _{pZL}	CL = 30 pF S2 Open		20			ns
T _{pZH}	CL = 30 pF S1 Open		20			ns

Driver Switching Characteristics

Parameter	Conditions	Min	Тур	Max		Units
				8922/23	8922A/23A	
SINGLE ENDED CHARACTER	ISTICS (Figures 4, 5, 6, 8)	•	•		•	
T _{pLH}	CL = 30 pF		12	15	15	ns
T _{pHL}	CL = 30 pF		12	15	15	ns
T _{TLH}	CL = 30 pF		5	10	10	ns
T _{THL}	CL = 30 pF		5	10	10	ns
T _{pLH} -T _{pHL}	CL = 30 pF		0.5			ns
Skew	CL = 30 pF (Note 5)		0.5	5	3.5	ns
Skew (Channel to Channel)			0.5	3.0	2.0	ns
T _{pLZ}	CL = 30 pF		15			ns
T_{pHZ}	CL = 30 pF		15			ns
T _{pZL}	CL = 30 pF		20			ns
T _{pZH}	CL = 30 pF		20			ns
DIFFERENTIAL SWITCHING O	CHARACTERISTICS (Note 6),	(Figure 4)			•	
T _{pLH}	CL = 30 pF		12	15	15	ns
T _{pHL}	CL = 30 pF		12	15	15	ns
T _{pLH} -T _{pHL}	CL = 30 pF		0.5	6.0	2.75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.

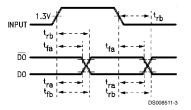
Note 3: All typical values are $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Only one output at a time should be shorted.

Note 5: Difference between complementary outputs at the 50% point.

Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).

The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:


$$\mathsf{Tcp} = \frac{(\mathsf{Tfb} \times \mathsf{Trb}) - (\mathsf{Tra} \times \mathsf{Tfa})}{\mathsf{Trb} - \mathsf{Tra} - \mathsf{Tfa} + \mathsf{Tfb}}$$

Where:

Tcp = Crossing Point

Tra, Trb, Tfa and Tfb are time measurements with respect to the input.

Switching Time Waveforms

AC Test Circuits and Switching Waveforms

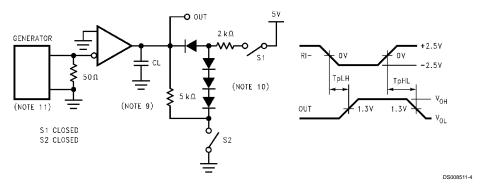


FIGURE 1.

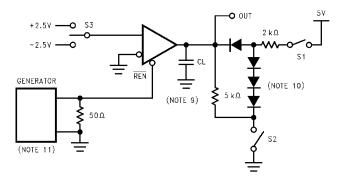
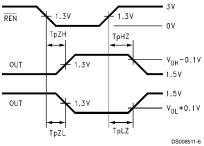
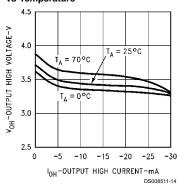
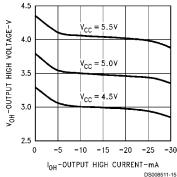



FIGURE 2.

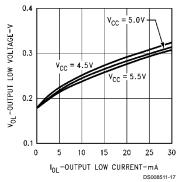


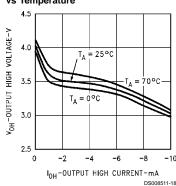
EIGI	IDE	2

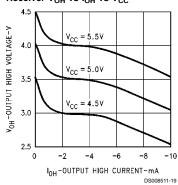

	S1	S2	S3
T _{PLZ}	Closed	Open	+2.5V
T _{PHZ}	Open	Closed	-2.5V
T _{PZL}	Closed	Open	+2.5V
T _{PZH}	Open	Closed	-2.5V

Typical Performance Characteristics (DS8923A)

Driver $V_{\rm OH}$ vs $I_{\rm OH}$ vs Temperature


Driver $V_{\rm OH}$ vs $I_{\rm OH}$ vs $V_{\rm CC}$

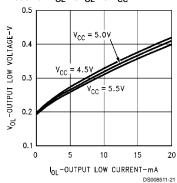

Driver $V_{\rm OL}$ vs $I_{\rm OL}$ vs Temperature


Driver $\rm V_{OL}$ vs $\rm I_{OL}$ vs $\rm V_{CC}$

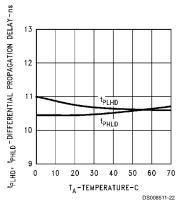
Receiver $V_{\rm OH}$ vs $I_{\rm OH}$ vs Temperature

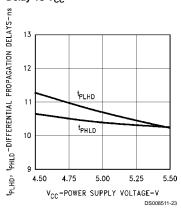


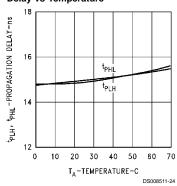
Receiver $V_{\rm OH}$ vs $I_{\rm OH}$ vs $V_{\rm CC}$

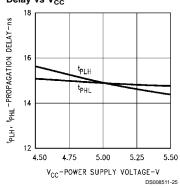


Typical Performance Characteristics (DS8923A) (Continued)

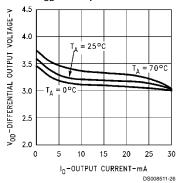

Receiver $V_{\rm OL}$ vs $I_{\rm OL}$ vs Temperature


Receiver $V_{\rm OL}$ vs $I_{\rm OL}$ vs $V_{\rm CC}$

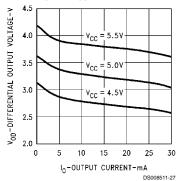

Driver Differential Propagation Delay vs Temperature


Driver Differential Propagation Delay vs V_{CC}

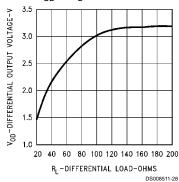
Receiver Propagation Delay vs Temperature

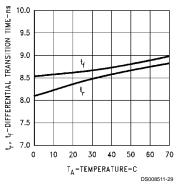


Receiver Propagation Delay vs V_{CC}

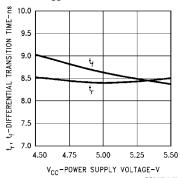


Typical Performance Characteristics (DS8923A) (Continued)

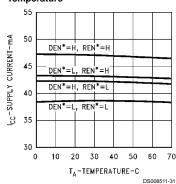

Driver $V_{\rm OD}$ vs Temperature


Driver $\rm V_{OD}$ vs $\rm V_{CC}$

Driver $V_{\rm OD}$ vs $R_{\rm L}$

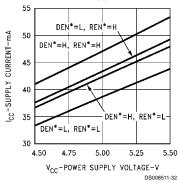


Driver Differential Transition Time vs Temperature

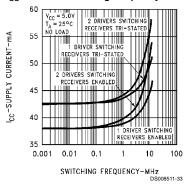


Driver Differential Transition

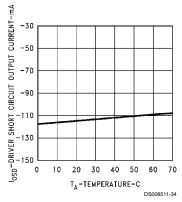
Time vs V_{CC}

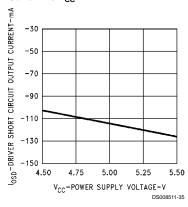


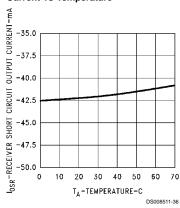
Supply Current vs Temperature

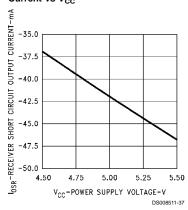


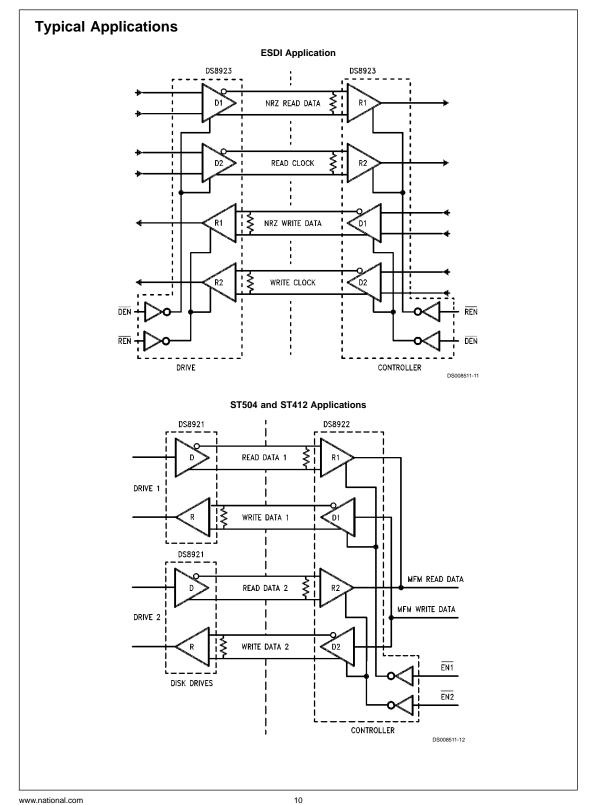
Typical Performance Characteristics (DS8923A) (Continued)


Supply Current vs $V_{\rm CC}$

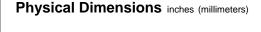

$I_{\rm CC}$ vs Driver Switching Frequency

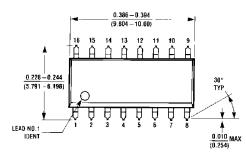

Driver Short Circuit Current vs Temperature

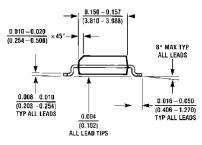

Driver Short Circuit Current vs V_{CC}

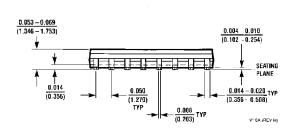


Receiver Short Circuit Current vs Temperature

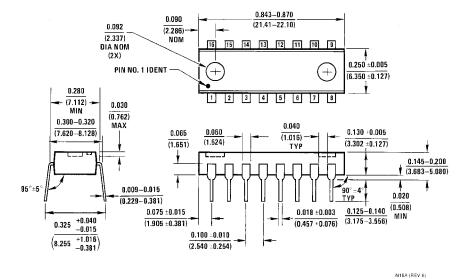



Receiver Short Circuit Current vs $V_{\rm CC}$





Book Extract End



SO Package (M)
Order Number DS8922M, DS8922AM, DS8923AM or DS8923AM NS Package Number M16A

Molded Dual-In-Line Package (N)
Order Number DS8922N, DS8922AN, DS8923N or DS8923AN NS Package Number N16A

DS8922/DS8922A/DS8923/DS8923A TRI-STATE RS-422 Dual Differential Line Driver and Receiver

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

www.national.com

National Semiconductor

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge-gtevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.

Tel: 81-043-299-2308 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.